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PREFACE
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Technical Administration.
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Rosengren, Jr.

This report discusses the history and technical advances of
centrifugal modeling of highly dynamic geotechnical events.
Difficulties and validity of centrifuge modeling technology are
presented along with examples of dynamic centrifuge modeling
and advantages of using centrifuge modeling technology to study
the behavior of geotechnical structures.
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SECTION I

I NTRODUCT ION

OBJECTIVIb

A great upsurge in the usage of the centrifuge modeling

technique for yeotechnical studies has taken place in recent

years. This technique has a unique potential to provide a means

of conducting small-scale model studies at prototype stress

levels. Althouyh some aitficulties are encountered at present,

the centrituge technique appears to show promise in dynamic

studies of geotechnical structures, and other geotechnical-

related phenomena. The potential of centrifuge technique for use

in geotechnical modeling was first recognized (independently) by

Daviaenkov (Reference 1) and Pokrovsky in 1932 (Reference 2), and

also (independently) by Bucky in 1933 (Reference 3). Pokrovsky

published monographs in 1935 (Reference 4) which gave real recog-

nition to the technique. Bucky did not pursue the technique to

any significant degree. Today several centrifuges, worldwide,

that are used tor geotechnical modeling purposes (Figure 1). The

objectives of this paper are to summarize the principles of

dynamic centrituge moaeling and to provide an overview of its

aevelopment in recent years.

AREAb UF APPLICATION

Broadly, the centrifuge modeling technique may be used in

the following four areas: (1) phenomenological study of geo-

technical structures whose behavior is poorly understood;

(2) verification of analytical procedures; (3) parametric and

* sensitivity studies; and (4) direct modeling to validate a

design or to assess the safety of an existing structure.
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PRINCIPLEb OF DYNAMIC CENTRIFUGE MODELING

The highly complex and nonlinear nature of the stress-strain

behavior of soils requires that any model studies be carried out

at prototype stress levels. The stress distribution in a soil

mass depends on the self-weight of soil itself. The prototype

stresses can be simulated in a small-scale model by carrying out

the model experiment under increased gravity (Figure 2). The cen-

trituge technique provides a means of increasing the gravity by

centritugal acceleration.

If a certain prototype structure is to be modeled to a scale

of N (N>l, eg: N = I00), the model experiment should be carried

out at a centrifugal acceleration of Ng (eg: lUOg). The stresses

at geometrically similar points in prototype and model would then

be identical, as shown in Figure 2. The scaling laws (Table 1)

associated with other quantities of interest can be derived using

dimensional analysis.

The simulation of dynamic events in the centrifuge requires

that certain similitude conditions be satisfied. Considering the

simulation of an acceleration history in a centrifuge:

(1) model frequency is N times larger than the prototype fre-

quency; (2) model amplitude is N times larger; and (3) model dura-

tion is N times shorter. Moreover, the energy in the model is N3

times smaller than that in the prototype. Hence, in simulating an

explosive loading in a centrifuge model, the weight of explosive

required would be N3 times smaller than that used in the field,

proviaed identical explosive types are usea. For example, a field

explosion with 8000 pounds of PETN can be simulated in the centri-

fuge with 3.65 grams of PETN at a centrifugal acceleration of 100g.

6
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SECTION II

DIFFICULTIES IN DYNAMIC CENTRIFUGE MODELING

Although considerable research has been devoted to geotech-

nical centrituge modeling in the past, one still encounters some

ditticulties in carrying out a dynamic experimental test in a

centrifuge. The simulation of earthquakes in the centrifuge

challenges centrifuge experimenters. Some recent techniques used

in small centrifuges for the simulation of earthquake events are:

The piezoelectric shaker system (Reference 5), cocked-spring system

(Reference 6), bcott's nydraulic simulator (Reference 7), Cambridge

bumpy road actuator (Reference 8), Zelikson's explosive simulator
(Reterence 9), ana Prevost's shaking plate (Reference 10). How-

" ever, these techniques cannot be used to simulate a given variable

- trequency earthquake motion, althouyh the piezoelectric shaker and

Scott's hydraulic simulator appear promising. Recently,

- Ananaarajah, et al, (Reference 31) have demonstrated the feasi-

. bility of simulating a variable frequency base motion using the

• piezoelectric shaker system. These techniques have not, however,

been adapted to large centrifuges. The simulation of lateral pile

- vibration, foundation vibration, and explosive events is relatively

*" simple and has been successfully done in the past (References 11 and

29).

The presence of nearby rigid boundaries in a centrifuge model,
and the consequent unwanted reflections of dynamic waves are major

concerns in dynamic testing. Coe et al. (Reterence 12) have

demonstrated the presence of standing waves in a sand deposit

confined in a centrifuge bucket and excited by surface dynamic

inputs. It was further shown by Coe et al. (Reference 13) that

certain reflection of low-amplitude dynamic waves can be attenuated

by using appropriate absorptive material at bucket boundaries. A

f*.
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stacked-ring apparatus was founa to simulate simple shear con-

ditions and used with good success in liquefaction studies.

Anandarajah, et al, (Reference 14) have used a frictionless

-* interface to inhibit undesirable reflections in the study of

dynamic response of dams. A larger test platform would also help

solve the boundary problem. Further research and development are

required to properly handle the boundaries for different types of

dynamic loads.

Figure 3 shows the velocity and acceleration fields of a

rotating mass where the component 2w x v is the Coriolis

acceleration. Thus, any dynamic excitation occurring in the plane

of rotation or any movement occurring within the soil model would

give rise to Coriolis acceleration. In 1975, Pokrovsky (Reference

* 15), by requiring that radial Coriolis acceleration be less than 10

percent ot the centrifuge acceleration, gave an upper bound to the

dynamic velocity as: V - 0o05wr. Also, by considering the motion of a

particle under the influence of Coriolis acceleration, Pokrovsky

suggested that the error can be neglected if V >2wr for high-

velocity events (eg: cratering event). Thus, an acceptable

range of velocity according to Pokrovsky is 2wr<V<05wr . The

Coriolis effect is unknown in the intermediate range of velocities.

Anandarajah, et al, (Reference 16) has analytically shown that

the earthquake-induced displacements of embankments in the

centrifuge may be in error up to 18 percent. Further, theoret-

ical and experimental studies are needed to evaluate the extent

of Coriolis effects under different dynamic loading conditions.

7
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A conflict in time-scaling can occur when dynamic events and

pore pressure dissipation are likely to appear simultaneously in

an experiment. The dynamic events occur as N times faster in a

centrifuge moOel, whereas pore water diffusion occurs as N2 times

, faster. Modeling liquefaction is an example where such

difficulty is encountered.

In such an event,,it is necessary to slow down the pore water

diffusion by a factor of N. This is fulfilled if the hydraulic

permeability is decreased by a factor of N. The use of low-

density or high-viscosity fluids decreases the permeability. It

has been shown that the use of fluids such as oil and glycerine

or mixture of these with water in some suitable proportion is an

ettective way of reducing permeability (Reference 17).

The use of prototype soil in the centrifuge model raises

some questions since it results in improper modeling of particle

size. One way of evaluating the influence of particle size on

model data is to perform a series of modeling of model

experiments, which will be discussed later.

Finally, the major difficulty of modeling in the centrifuge

is the recreation of in situ soil conditions and the in situ

loading history in the model. This, however, does not pose a

major problem in such applications as verification of theories,

parametric studies, understanding structural behavior, etc.

DI
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SECTION III

VALIDITY OF CENTRIFUGE MODELING TECHNIQUE

As in any modeling technique, mathematical or physical,

uncertainties are inherent in centrifuge modeling. It is,therefore,,

necessary to verity the validity of the test results in some

manner. The technique of modeling of models is a means of veri-

fying the validity of centrifuge scaling laws, boundary effects and

particle size effects. This is based on the concept that the pro-

totype predictions made by using the centrifuge modeling technique

is independent of the scale used. For example, the prototype

behavior of a 100-foot tall dam predicted by using a 1-foot tall

"* centrifuge model of 100 g centrifugal acceleration should be

reasonably close to the results predicted by using a 2-foot tall
- model at 50 g. A number of such modeling of model studies have

been conducted for static loading cases (References 18 and 19) and

the results confirmed the accuracy of centrifuge predictions under

.* limited test conditions. Very few such studies can be found in the

* literature that deal with dynamic centrifuge modeling. Morris
(Reference 20) performed a modeling series of towers resting on

cohesionless soils and subjected to dynamic loading. The measured
natural frequencies of the model tower at three different scales

(80 g, 40 g and 26 g) obeyed the scaling law very well (Figures 4a

and 4b).

An indirect way of gaining some level of confidence in the

centrifuge results is by showing that the centrifuge predictions

agree reasonably well with analytical predictions whose validity

has already been established by some other means. A considerable

amount of evidence is available in this respect, as shown in

Figures 5 and 6 (Reference 21).

The final confirmation of the validity of centrifuge modeling

technique can only be realized by showing that centrifuge pre-

dictions are reasonably close to field observations. Very few

correlations of this nature are currently available for either

static or dynamic loading conditions.

10
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SECTION IV

EXAMPLES OF DYNAMIC CENTRIFUGE MODELING.

Numerous examples of centrituge modeling are available in the

literature where the dynamic response and liquefaction behavior of

earth structures subjected to earthquake loading were studied in

the centrifuge. Ananaarajah (Reference 21) has shown that dynamic

response of dams predicted by centrifuge technique and by an

analytical technique compared reasonably well, as shown in Figures

5 and 6. The liquefaction between observed in the centrifuge was

shown to be very close to analytical predications (Reference 22) as

shown in Figure 7.

The offshore gravity platforms and pile-supported foundations

are designed to withstand wave loading. The inertial effects in

this case are negligible, whereas pore pressure build-up, soil

softening, strain accumulation, etc., are important. This problem

has been modeled successfully in the past (Reference 23). Foot-

ii~ys, spread or pile, subjected to machine vibrations on the other

hand require the considerations of inertial effects. In 1977,Scott

(Reference 24) demonstrated the feasibility of carrying out vibra-

tion tests in the centrifuge at 100 g on a pile buried in dry sand

and showed how they could be used to verity existing analytical

procedures. A similar series of tests wag conducted by Scott

(Reference 25) to examine the dynamic load-displacement behavior of

buried piles. Lateral displacement was observed to develop at an

increasing rate. This was explained by the weakening of soil and

degradation of the soil strength which propagates down the nile

with increasing number of load cycles. Urtis (Reference 29)

investigatea the dynamic behavior of cantilever retaining walls in

a centrifuge.
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kecently, the centtifuge technique has also been used to model
crateriny events, blast loading, and shockwave propagation through

soili media. Schmidt demonstrated the feasibility of modeling

cratering event in the centrifuge in a series of papers (References

26 and 27). Nielsen (Reference 28) performed experiments in the

centrituge to model blast-loading characteristics of conventional

weapons. Nielsen's research effort consisted of a series of blast

. events at 3U g - 80 g centrifugal accelerations. The experimental

setup consisted of a burster slab resting on a soil foundation, as
shown in Figure 8. Oroinary blasting cap detonators were used to

simulate the weapon (Figure 9). The weight range of explosives used

was from 0.2 to 0.8 grams. The centrifuge test data with the

burster slab are shown in Figure 10, where the vertical normal

stress, S(psi) is plotted against a scaled distance, X = R/W

(Ft/Ibl/3). Here R is the distance in feet from the explosive and

Wis the weight of the explosive in pounds. The best fit to the

data shown in Figure 10 is:

$ - 5879 X -1.325

This research effort demonstrated the feasibility of using a

centrifuge to physically model the conventional weapons effects.
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SECTIUN V

ADVANTAGES OF USING CENTRIFUGE MODELING TECHNIQUE TO STUDY THE
BEHAVIOR OF GEOT HNICAL STRUCTURES

Several advantages of centrifuge modeling are listed below.

I. Prototype stresses and strains are correctly modeled.

2. It provides a means of veritying theories which in some

cases, particularly under earthquake-loading conditions, is very

aitticult if not impossible.

3. It provides a relatively inexpensive means of directly

assessing (a) the influence of soil type, water content, structural

material type, etc. on the structural behavior, ana (b) effective-

ness of the methods of protecting undergrouna and surface structure

against shock and earthquake loading.

*4. It provides a means of directly observing the deformation

processes ana failure mechanisms with the aid of video cameras,

high-speed cameras and suitable transducers.

There are numerous other advantages of using a centrifuge for

geotechnical modeling, depenaing on the loading and test condi-

ions. The full potential of the techniques, however, can only be

realizea in a large - capacity centrifuge such as the National

Geotechnical Centrifuge Facility at Ames, California, USA (Figure

1). This allows a large-size model (6 feet by 6 feet by 5 feet) to
be tested which, in turn, permits extensive instrumentation and

modeling details. The boundary ettects are also reduced by testing

models in large buckets. This further permits modeling of moaels

at a broader range of scales.

21
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SECTION VI

SUMMARY AND CONCLUSIONM

The centrituge mooeling technique has a tremendous potential

for experimentally determining the behavior of soils and soil-

structure interaction problems. The prototype stresses and strains

are correctly modeled in a centrifuge model by the application of

centrifugal acceleration. Past experiments clearly demonstrate the

feasibility of performing dynamic centrifuge modeling under

earthquake-loading, machine vibration, and blast-loading environ-

ments. There are, however, difticulties associated with dynamic

centrituge moaeling; some of which can be overcome by performing

experiments in large capacity centrifuges. The remaining aiffi-

culties require further research and development.
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